PD-95331

International **ICR** Rectifier

AUTOMOTIVE MOSFET

IRF1405SPbF IRF1405LPbF

Typical Applications

- Electric Power Steering (EPS)
- Anti-lock Braking System (ABS)
- Wiper Control
- Climate Control
- Power Door
- Lead-Free

Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax • Description

Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	131©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	93©	A
I _{DM}	Pulsed Drain Current ①	680	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@	590	mJ
I _{AR}	Avalanche Current	See Fig.12a, 12b, 15, 16	A
E _{AR}	Repetitive Avalanche Energy@		mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		0.75	°C/W
R _{0JA}	Junction-to-Ambient (PCB mount)®		40	

IRF1405S/LPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	4.6	5.3	mΩ	V _{GS} = 10V, I _D = 101A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = 10V, I _D = 250µA
g _{fs}	Forward Transconductance	69			S	V _{DS} = 25V, I _D = 110A
Inco	Drain-to-Source Leakage Current		—	20	μA	$V_{DS} = 55V, V_{GS} = 0V$
-088	Brain to course Louidge current			250		$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			200	nΔ	V _{GS} = 20V
GSS	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$
Qg	Total Gate Charge		170	260		I _D = 101A
Q _{gs}	Gate-to-Source Charge		44	66	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		62	93		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = 38V$
tr	Rise Time		190		ne	I _D = 110A
t _{d(off)}	Turn-Off Delay Time		130		113	R _G = 1.1Ω
t _f	Fall Time		110			V _{GS} = 10V ④
	Internal Drain Inductance		45			Between lead,
-0			7.0		пн	6mm (0.25in.)
	Internal Source Inductance		75			from package
LS			1.5			and center of die contact
C _{iss}	Input Capacitance		5480			$V_{GS} = 0V$
Coss	Output Capacitance		1210		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		280	—		f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		5210			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		900	—		$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance S		1500			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			1010		MOSFET symbol
	(Body Diode)			1316	Δ	showing the
I _{SM}	Pulsed Source Current			600		integral reverse
	(Body Diode) ①			000		p-n junction diode.
V _{SD}	Diode Forward Voltage		—	1.3	V	$T_J = 25^{\circ}C, I_S = 101A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		88	130	ns	$T_J = 25^{\circ}C, I_F = 101A$
Q _{rr}	Reverse RecoveryCharge		250	380	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intr	insic tu	ırn-on ti	me is ne	egligible (turn-on is dominated by L_S+L_D)

International **TGR** Rectifier D²Pak Package Outline

IRF1405S/LPbF

Dimensions are shown in millimeters (inches)

SECTION A-A

MB	MILLIM	ETERS	INCHES		Ŷ	
0 L	MIN.	MAX.	MIN.	MAX.	E S	
А	4.06	4.83	.160	.190		
A1		0.127		.005		
ь	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	4	
b2	1,14	1,40	.045	.055		
с	0.43	0.63	.017	.025		
c1	0.38	0.74	.015	.029	4	
c2	1.14	1.40	.045	.055		
D	8.51	9.65	.335	.380	3	
D1	5.33		.210			
Ε	9.65	10.67	.380	.420	3	
E1	6.22		.245			
е	2.54	BSC	.100	BSC		
L	14.61	15.88	.575	.625]	
L1	1,78	2.79	.070	.110		
L2		1,65		.065		
L3	1.27	1,78	.050	.070		
L4	0.25	BSC	.010	BSC	1	
m	17,78		.700			
m1	8.89		.350			
n	11.43		.450			
0	2.08		.082			
р	3.81		.150			
θ	90'	93*	90'	93'		

.....

HEAFET	IGB IS, COFACK	DIODES
1 GATE	1 GATE	1 ANODE *
2 DRAIN	2 COLLECTOR	2 CATHODE
3 SOURCE	3 EMITTER	3 ANODE

PART DEPENDENT.

PART NUMBER

DATE CODE

WEEK 02 LINE L

YEAR 0 = 2000

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIVENSIONS ARE SHOWN IN WILLIMETERS [INCHES]. 3. DIVENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIVENSIONS ARE MEASURED AT THE OUTWOST EXTREMES OF THE PLASTIC BODY.

F 530S

10R 002L

μuμ

80 24

A DIMENSION 61 AND CI APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION: INCH.

D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" Note: "P" in assembly line position indicates "Lead-Free" ASSEMBLY LOT CODE

IRF1405S/LPbF

International **TOR** Rectifier D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Starting $T_J = 25^{\circ}C$, L = 0.11mH $R_G = 25\Omega$, $I_{AS} = 101A$. (See Figure 12).
- $\ensuremath{\textcircled{}}$ $\ensuremath{I_{SD}}\xspace \leq$ 101A, di/dt \leq 210A/µs, V_{DD} \leq $V_{(BR)DSS},$ T_J \leq 175°C
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- $\ensuremath{\mathbb{S}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- \odot Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

⑧ This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

> Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market.

> > International